Research Article

3-Equitable Prime Cordial Labeling of Graphs

by  S. Murugesan, D. Jayaraman, J. Shiama
journal cover
International Journal of Applied Information Systems
Foundation of Computer Science (FCS), NY, USA
Volume 5 - Issue 9
Published: July 2013
Authors: S. Murugesan, D. Jayaraman, J. Shiama
10.5120/ijais13-450974
PDF

S. Murugesan, D. Jayaraman, J. Shiama . 3-Equitable Prime Cordial Labeling of Graphs. International Journal of Applied Information Systems. 5, 9 (July 2013), 1-4. DOI=10.5120/ijais13-450974

                        @article{ 10.5120/ijais13-450974,
                        author  = { S. Murugesan,D. Jayaraman,J. Shiama },
                        title   = { 3-Equitable Prime Cordial Labeling of Graphs },
                        journal = { International Journal of Applied Information Systems },
                        year    = { 2013 },
                        volume  = { 5 },
                        number  = { 9 },
                        pages   = { 1-4 },
                        doi     = { 10.5120/ijais13-450974 },
                        publisher = { Foundation of Computer Science (FCS), NY, USA }
                        }
                        %0 Journal Article
                        %D 2013
                        %A S. Murugesan
                        %A D. Jayaraman
                        %A J. Shiama
                        %T 3-Equitable Prime Cordial Labeling of Graphs%T 
                        %J International Journal of Applied Information Systems
                        %V 5
                        %N 9
                        %P 1-4
                        %R 10.5120/ijais13-450974
                        %I Foundation of Computer Science (FCS), NY, USA
Abstract

A 3-equitable prime cordial labeling of a graphGwith vertex set V is a bijection f from V to f1; 2; :::; jV jg such that if an edge uv is assigned the label 1 if gcd(f(u); f(v)) = 1 and gcd(f(u) + f(v); f(u). . f(v)) = 1, the label 2 if gcd(f(u); f(v)) = 1 and gcd(f(u) + f(v); f(u) . . f(v)) = 2 and 0 otherwise, then the number of edges labeled with i and the number of edges labeled with j differ by atmost 1 for 0 i; j 2. If a graph has a 3-equitable prime cordial labeling, then it is called a 3-equitable prime cordial graph. In this paper, we investigate the 3-equitable prime cordial labeling behaviour of paths, cycles, star graphs and complete graphs.

References
  • F. Harary, Graph Theory, Addition-Wesley, Reading, Mass, 1972.
  • David M. Burton, Elementary Number Theory, Second Edition,Wm. C. Brown Company Publishers, 1980.
  • J. A. Gallian, A dynamic survey of graph labeling, Electronic Journal of Combinatorics, 17 (2010), DS6.
  • L. W. Beineke and S. M. Hegde, Strongly multiplicative graphs, Discuss. Math. Graph Theory, 21(2001), 63-75.
  • G. S. Bloom and S. W. Golomb, Applications of numbered undirected graphs, Proceedings of IEEE, 165(4)(1977), 562-570.
  • I. Cahit, Cordial graphs, A weaker version of graceful and harmonius graphs, Ars Combinatoria, 23(1987), 201-207.
  • S. K. Vaidya, G. V. Ghodasara, Sweta Srivastav and V. J. Kaneria, Some new cordial graphs, Int. J. of Math and Math. Sci 4(2)(2008)81-92.
  • I. Cahit, On cordial and 3-equitable labeling of graphs, Utilitas Math, 37(1990), 189-198.
  • M. Z. Youssef, A necessary condition on k-equitable labelings, Utilitas Math, 64(2003), 193-195.
  • M. Sundaram, R. Ponraj and S. Somasundaram, Prime cordial labeling of graphs, Journal of Indian Academy of Mathematics, 27(2005), 373-390.
  • S. K. Vaidya and P. L. Vihol , Prime cordial labeling of some graphs, Modern Applied Science, 4(8)(2010), 119-126.
Index Terms
Computer Science
Information Sciences
No index terms available.
Keywords

3-equitable prime cordial labeling 3-equitable prime cordial graph

Powered by PhDFocusTM