Research Article

A Machine Learning Approach to Predicting High Blood Pressure Using Predictive Modeling on Local and Global Datasets to Enhance Patient Safety

by  Tolulope Esther Alabede, Japheth Richard Bunakiye, Michael Doorumun Ishima, Alimot Olaide Abdulazeez
journal cover
International Journal of Applied Information Systems
Foundation of Computer Science (FCS), NY, USA
Volume 13 - Issue 1
Published: November 2025
Authors: Tolulope Esther Alabede, Japheth Richard Bunakiye, Michael Doorumun Ishima, Alimot Olaide Abdulazeez
10.5120/ijais2025452036
PDF

Tolulope Esther Alabede, Japheth Richard Bunakiye, Michael Doorumun Ishima, Alimot Olaide Abdulazeez . A Machine Learning Approach to Predicting High Blood Pressure Using Predictive Modeling on Local and Global Datasets to Enhance Patient Safety. International Journal of Applied Information Systems. 13, 1 (November 2025), 72-85. DOI=10.5120/ijais2025452036

                        @article{ 10.5120/ijais2025452036,
                        author  = { Tolulope Esther Alabede,Japheth Richard Bunakiye,Michael Doorumun Ishima,Alimot Olaide Abdulazeez },
                        title   = { A Machine Learning Approach to Predicting High Blood Pressure Using Predictive Modeling on Local and Global Datasets to Enhance Patient Safety },
                        journal = { International Journal of Applied Information Systems },
                        year    = { 2025 },
                        volume  = { 13 },
                        number  = { 1 },
                        pages   = { 72-85 },
                        doi     = { 10.5120/ijais2025452036 },
                        publisher = { Foundation of Computer Science (FCS), NY, USA }
                        }
                        %0 Journal Article
                        %D 2025
                        %A Tolulope Esther Alabede
                        %A Japheth Richard Bunakiye
                        %A Michael Doorumun Ishima
                        %A Alimot Olaide Abdulazeez
                        %T A Machine Learning Approach to Predicting High Blood Pressure Using Predictive Modeling on Local and Global Datasets to Enhance Patient Safety%T 
                        %J International Journal of Applied Information Systems
                        %V 13
                        %N 1
                        %P 72-85
                        %R 10.5120/ijais2025452036
                        %I Foundation of Computer Science (FCS), NY, USA
Abstract

Hypertension remains a major global public health burden, contributing to cardiovascular disease and premature deaths. Despite advances in medical care, delayed diagnosis particularly in developing countries like Nigeria continues to undermine effective prevention and intervention strategies. Traditional approaches rely on periodic measurements, which often fail to capture early risk indicators/patient-specific factors. With the growing availability of large-scale clinical data, machine learning provides an opportunity to enhance predictive modeling for early detection. This study proposed a machine learning framework for predicting hypertension using both local (426 patient records from Federal Medical Centre, Yenagoa) and global datasets (174,982 instances from Kaggle). The dataset was preprocessed using python libraries. Four ML algorithms: Logistic Regression, Random Forest, K-Nearest Neighbor, and XGBoost were trained separately on different feature dimensions with evaluation metrics including accuracy, sensitivity, specificity, F1-score, and AUC-ROC. Results indicated that RF achieved ~99.95% accuracy on the global dataset, while XGB on local data attained ~98.84% with superior sensitivity in distinguishing high-risk categories. A prototype web app built from the best-performing model was successfully tested, showing strong clinical potential. The study highlights that using local and global datasets improved generalization, while ensemble models enhanced predictive reliability for early detection to improve patient safety.

References
  • WHO (2023). Hypertension. World Health Organization (WHO). https://www.who.int/news-room/fact-sheets/detail/hypertension
  • Vidal-Petiot, E. (2022). Thresholds for hypertension definition, treatment initiation, and treatment targets: Recent Guidelines at a glance. Circulation, 146(11), 805–807. https://doi.org/10.1161/circulationaha.121.055177
  • World Heart Federation. (2024). World Heart Report 2023: Full Report - World Heart Federation. https://world-heart-federation.org/resource/world-heart-report-2023/
  • Montagna, S., Pengo, M. F., Ferretti, S., Borghi, C., Ferri, C., Grassi, G., Muiesan, M. L., & Parati, G. (2022). Machine Learning in Hypertension Detection: A study on World Hypertension Day data. Journal of Medical Systems, 47(1). https://doi.org/10.1007/s10916-022-01900-5
  • Haruna, I.S., Abubakar, S.S., Ibrahim, A., Osi, A.A., & Abubakar, U. (2025). Application of Machine Learning Techniques for Predicting Hypertension Status and Indicators. UMYU Scientifica, 4(2), 226–233. https://doi.org/10.56919/usci.2542.023
  • Mondal, A. (2024). Predictive Modeling for Hypertension Detection: a Machine Learning approach. IJNRD.org. https://ijnrd.org/viewpaperforall.php?paper=IJNRD2405537
  • Obafemi, A. S. (2022). A predictive model for predicting blood pressure levels using machine learning techniques. https://norma.ncirl.ie/6241
  • Effati, S., Kamarzardi-Torghabe, A., Azizi-Froutaghe, F., Atighi, I., & Ghiasi-Hafez, S. (2024). Web application using machine learning to predict cardiovascular disease and hypertension in mine workers. Scientific Reports, 14, 31662. https://doi.org/10.1038/s41598-024-80919-9
  • Kurniawan, R., Utomo, B., Siregar, K. N., Ramli, K., Besral, B., Suhatril, R. J., & Pratiwi, O. A. (2023). Hypertension prediction using machine learning algorithm among Indonesian adults. IAES International Journal of Artificial Intelligence (IJ-AI), 12(2), 776. https://doi.org/10.11591/ijai.v12.i2.pp776-784
  • Garg, A., Sharma, B., & Khan, R. (2021). Heart disease prediction using machine learning techniques. IOP Conference Series. Materials Science and Engineering, 1022(1), 012046. https://doi.org/10.1088/1757-899x/1022/1/012046
  • Islam, M., Alam, J., Maniruzzaman, M., Ahmed, N.A.M.F., Ali, S., Rahman, J., & Roy, D.C. (2023). Predicting the risk of hypertension using machine learning algorithms: A cross-sectional study in Ethiopia. PLoS ONE, 18(8), e0289613. https://doi.org/10.1371/journal.pone.0289613
  • Jeong, Y. W., Jung, Y., Jeong, H., Huh, J. H., Sung, K.-C., Shin, J.-H., Kim, H. C., Kim, J. Y., & Kang, D. R. (2022). Prediction Model for Hypertension and Diabetes Mellitus Using Korean Public Health Examination Data (2002–2017). Diagnostics, 12, 1967. https://doi.org/10.3390/diagnostics12081967
  • Sandhiya, R., Tharun, D., Subhika, S., Suriya, K. K., Sruthi, K., & Madhumitha, S. (2024). Enhanced Hypertension Disease Prediction using Machine Learning. Proceedings of the 3rd International Conference on Optimization Techniques in the Field of Engineering (ICOFE-2024). SSRN: https://ssrn.com/abstract=5091273 or http://dx.doi.org/10.2139/ssrn.5091273
  • Das, S., Roy, S. K., Chakraborty, S., Dey, P., & Ghosh, D. (2024). Prediction of blood pressure using machine learning. International Journal of Intelligent Systems and Applications in Engineering, 12(22s), 579–586.
  • Du, J., Chang, X., Ye, C., Zeng, Y., Yang, S., Wu, S., & Li, L. (2023). Developing a hypertension visualization risk prediction system utilizing machine learning and health check-up data. Scientific Reports, 13(1). https://doi.org/10.1038/s41598-023-46281-y
  • Hwang, S. H., Lee, H., Lee, J. H., Lee, M., Koyanagi, A., Smith, L., Rhee, S. Y., Yon, D. K., & Lee, J. (2024). Machine Learning–Based Prediction for Incident Hypertension based on regular health checkup data: Derivation and validation in 2 independent nationwide cohorts in South Korea and Japan. Journal of Medical Internet Research, 26, e52794. https://doi.org/10.2196/52794
  • Wanriko, S., Hnoohom, N., Wongpatikaseree, K., Jitpattanakul, A., & Musigavong, O. (2021). Risk Assessment of Pregnancy-induced Hypertension Using a Machine Learning Approach. 2021 Joint 6th International Conference on Digital Arts, Media and Technology with 4th ECTI Northern Section Conference on Electrical, Electronics, Computer and Telecommunication
  • Chang, W., Liu, Y., Xiao, Y., Yuan, X., Xu, X., Zhang, S., & Zhou, S. (2019). A Machine-Learning-Based prediction method for hypertension outcomes based on medical data. Diagnostics, 9(4), 178. https://doi.org/10.3390/diagnostics9040178
  • Ishima, M.D., & Ikirigo, S.A. (2024). Detection and Classification of Malicious Websites Using Natural Language Processing (NLP) and Machine Learning (ML) Techniques. International Journal of Scientific Research in Science & Engineering Technology (IJSRSET), 11(6), 206–221. https://doi.org/10.32628/IJSRSET2411449
  • Hasannejad, A. (2022). Data preprocessing in machine learning. Kaggle. https://www.kaggle.com/code/alirezahasannejad/data-preprocessing-in-machine-learning
  • Ippolito, P. P. (2019). Feature engineering techniques. https://ppiconsulting.dev/blog/blog30/
  • Jurafsky, D., & Martin, J. H. (2025). Speech and Language Processing. Draft of January 12, 2025. https://web.stanford.edu/~jurafsky/slp3/5.pdf
  • Banoula, M. (2025). An Introduction to logistic regression in Machine learning. Simplilearn.com. https://www.simplilearn.com/tutorials/machine-learning-tutorial/logistic-regression-in-python
  • Sakshi, A. (2023). Machine Learning algorithms, perspectives, and real-world application: Empirical evidence from United States trade data. Indian Institute of Foreign Trade. MPRA Paper No. 116579. https://mpra.ub.uni-muenchen.de/116579/
  • Kavlakoglu, E., & Russi, E. (2025, May 19). XGBoost. IBM. https://www.ibm.com/think/topics/xgboost
  • Tyagi, A. (2025). What is XGBoost Algorithm? Analytics Vidhya. https://www.analyticsvidhya.com/blog/2018/09/an-end-to-end-guide-to-understand-the-math-behind-xgboost/
  • Eldem, A. (2025). A new hybrid learning model for early diagnosis of hypertension using IoMT technologies. Ain Shams Engineering Journal (ASEJ). https://doi.org/10.1016/j.asej.2025.103490
  • Srivastava, T. (2025). 12 Important model evaluation Metrics for Machine Learning Everyone should know (Updated 2025). Analytics Vidhya. https://www.analyticsvidhya.com/blog/2019/08/11-important-model-evaluation-error-metrics/
  • Schlosser, T., Friedrich M., Meyer, T., and Kowerko, D (2024). A Consolidated Overview of Evaluation and Performance Metrics for Machine Learning and Computer Vision. Junior Professorship of Media Computing, Chemnitz University of Technology, 09107 Chemnitz, Germany. https://www.researchgate.net/publication/374558675_A_Consolidated_Overview_of_Evaluation_and_Performance_Metrics_for_Machine_Learning_and_Computer_Vision
  • Swaminathan, Sathyanarayanan & Tantri, B Roopashri. (2024). Confusion Matrix-Based Performance Evaluation Metrics. African Journal of Biomedical Research. 27. 4023-4031. 10.53555/AJBR.v27i4S.4345.
  • Narkhede, S. (2018). Understanding AUC - ROC Curve. https://medium.com/data-science/understanding-auc-roc-curve-68b2303cc9c5
Index Terms
Computer Science
Information Sciences
No index terms available.
Keywords

Hypertension Blood Pressure Machine Learning Predictive Modeling Systolic BP Diastolic BP

Powered by PhDFocusTM