Research Article

Multiselectivity Spatio-Temporal Analysis for Motion and Velocity Capture

by  Mohamed El Aallaoui
journal cover
International Journal of Applied Information Systems
Foundation of Computer Science (FCS), NY, USA
Volume 12 - Issue 29
Published: May 2020
Authors: Mohamed El Aallaoui
10.5120/ijais2020451856
PDF

Mohamed El Aallaoui . Multiselectivity Spatio-Temporal Analysis for Motion and Velocity Capture. International Journal of Applied Information Systems. 12, 29 (May 2020), 1-10. DOI=10.5120/ijais2020451856

                        @article{ 10.5120/ijais2020451856,
                        author  = { Mohamed El Aallaoui },
                        title   = { Multiselectivity Spatio-Temporal Analysis for Motion and Velocity Capture },
                        journal = { International Journal of Applied Information Systems },
                        year    = { 2020 },
                        volume  = { 12 },
                        number  = { 29 },
                        pages   = { 1-10 },
                        doi     = { 10.5120/ijais2020451856 },
                        publisher = { Foundation of Computer Science (FCS), NY, USA }
                        }
                        %0 Journal Article
                        %D 2020
                        %A Mohamed El Aallaoui
                        %T Multiselectivity Spatio-Temporal Analysis for Motion and Velocity Capture%T 
                        %J International Journal of Applied Information Systems
                        %V 12
                        %N 29
                        %P 1-10
                        %R 10.5120/ijais2020451856
                        %I Foundation of Computer Science (FCS), NY, USA
Abstract

This paper focuses on the development of a new 2D time wavelets family for image sequence that can capture different motion in image sequence, ranging from highly directional ones to fully isotropic ones. We propose a multiselectivity spatio-temporal analysis, defined by isotropic and multidirectional decomposition with different angular selectivity. The result is a dictionary of wavelet transform with different selectivity level, which provides a theoretical tool to select a best representation for motion and velocity. This representation was used to developer a velocity capture algorithm in image sequence. The Experimental results demonstrate the effectiveness of the proposed approach.

References
  • C. Zhu, W.S. Qi, and W. Se. Predictive fine granularity successive elimination for fast optimal block-matching motion estimation. IEEE Transactions on Image Processing, 10(2):213221, 2005.
  • T. Koga, K. Iinuma, A. Hirano, Y. Iijima, and T. Ishiguro. Motion compensated inter-frame coding for video conferencing. Proceedings of the NTC81, pp. C.9.6.19.6.5,, 1981.
  • A. Ess, K. Schindler, B. Leibe, and L. Van Goo. Object detection and tracking for autonomous navigation in dynamic environments. The International Journal of Robotics Research, 29(14):1707–1725.
  • M. Betke, E. Haritaoglu, and LS. Davis. Real-time multiple vehicle tracking from a moving vehicle. Mach Vision Appl, 12(2):69–83, 2000.
  • A. Taboada-Crispi, H. Sahli, and M.O. Monteagudo. Anomaly detection in medical image analysis. Handbook of Research on Advanced Techniques in Diagnostic Imaging and Biomedical Applications, Publisher: IGI Global(2009).
  • Y. Wang, K.F Loe, T. Tan, and J-K. Wu. Spatiotemporal video segmentation based on graphical models. IEEE transactions on image processing, 14:937–947, July 2005.
  • W. Brendel and S. Todorovic. Video object segmentation by tracking regions. IEEE 12th International Conference on Computer Vision, pages 833–840, 2009.
  • M. El Aallaoui and A. Gourch. Video segmentation using 2d+time mumford-shah functional. International Journal of Computer Applications (0975 - 8887), 55(3):15–22, 2012.
  • Z.Wang, X. Gao, B. Zhang, and H.Wu. Motion estimation for a mobile robot based on real-time stereo vision system. 2nd International Congress on Image and Signal Processing, pages 1–5, 2009.
  • J.J Tsai and H. Ming Hang. Modeling of pattern-based block motion estimation and its application. IEEE Transactions on Circuits and Systems for Video Technology, 19(1):108–113.
  • C. Zhu, W. S. Qi, and W. Ser. Predictive fine granularity successive elimination for fast optimal block-matching motion estimation. EEE Trans. Image Process, 14(2):213221, 2005.
  • C.P. Bernard. Ondelettes et problmes mal poss : la mesure du flot optique et l’interpolation irrgulire. PhD thesis, Ecole Polytechnique, CMAP, Centre de Mathematiques Appliques., 1999.
  • F. Mujica. Spatio-temporal continuous transform for motion estimation. hD Thesis, 1999.
  • P. Brault. Motion estimation and segmentation. PhD thesis, 2005.
  • M. Duval-Destin. Analyse spatiale et spatio-temporelle de la stimulation visuelle l’aide de la transforme en ondelettes. Thse de Doctorat, 1991.
  • M. Duval-Destin and R. Murenzi. Spatio-temporal wavelets: Application to the analysis of moving patterns. in Progress in Wavelet Analysis and Applications, 1992.
  • P. Brault and J.P Antoine. A spatio-temporal gaussianconical wavelet with high aperture selectivity for motion and speed analysis. Applied and Computational Harmonic Analysis, 34:148–161, 2013.
  • J-P Antoine. Galilean wavelets: Coherent states of the affine galilei group. Journal of Mathematical Physics, 40(11), 1999.
  • J.-P. Leduc, J. Corbett, M. Kong, V. M. Wickerhauser, and B. K. Ghosh. Accelerated spatio-temporal wavelet transforms: An iterative trajectory estimation. IEEE ICASSP5, page 7772780, 1998.
  • J-P. Antoine, R. Murenzi, P. Vandergheynst, and S.T. Ali. Two-dimensional wavelets and their relatives. Cambridge University Press, 2004.
  • S. Mallat. A wavelet tour of signal processing. Academic Press, 1998.
  • J-P. Antoine, P. Carrette, R. Murenzi, and B. Piette. Image analysis with two-dimensional continuous wavelet transform. Signal Processing, 31:241272, 1993.
  • S. T. Ali, J-P. Antoine, and J-P. Gazeau. Coherent states, wavelets and their generalizations. Springer, 2000.
  • J-P. Antoine and R. Murenzi. Two-dimensional directional wavelets and the scale-angle representation. Signal Processing, page 259281, 1996.
  • M. ElAallaoui, A. ElBouhtouri, and A. Ayadi. Adaptive selectivity representation: Design, and applications. Int. J. Wavelets, Multiresolution and Information Processing (ijwmip), 7:89–113, 2009.
Index Terms
Computer Science
Information Sciences
No index terms available.
Keywords

2D+time wavelets Velocity capture Motion analysis Multiselectivity analysis Angular selectivity

Powered by PhDFocusTM