Research Article

Weak Domination in Block Graphs

by  M. H. Muddebihal, Geetadevi Baburao
journal cover
International Journal of Applied Information Systems
Foundation of Computer Science (FCS), NY, USA
Volume 12 - Issue 27
Published: February 2020
Authors: M. H. Muddebihal, Geetadevi Baburao
10.5120/ijais2020451844
PDF

M. H. Muddebihal, Geetadevi Baburao . Weak Domination in Block Graphs. International Journal of Applied Information Systems. 12, 27 (February 2020), 15-20. DOI=10.5120/ijais2020451844

                        @article{ 10.5120/ijais2020451844,
                        author  = { M. H. Muddebihal,Geetadevi Baburao },
                        title   = { Weak Domination in Block Graphs },
                        journal = { International Journal of Applied Information Systems },
                        year    = { 2020 },
                        volume  = { 12 },
                        number  = { 27 },
                        pages   = { 15-20 },
                        doi     = { 10.5120/ijais2020451844 },
                        publisher = { Foundation of Computer Science (FCS), NY, USA }
                        }
                        %0 Journal Article
                        %D 2020
                        %A M. H. Muddebihal
                        %A Geetadevi Baburao
                        %T Weak Domination in Block Graphs%T 
                        %J International Journal of Applied Information Systems
                        %V 12
                        %N 27
                        %P 15-20
                        %R 10.5120/ijais2020451844
                        %I Foundation of Computer Science (FCS), NY, USA
Abstract

For any graph G=(V,E), the block graph B(G) is a graph whose set of vertices is the union of set of blocks of G in which two vertices are adjacent if and only if the corresponding blocks of G are adjacent. For any two adjacent vertices u and v we say that v weakly dominates u if deg(v)=deg(u). A dominating set D of a graph B(G) is a weak block dominating set of B(G), if every vertex in V[B(G) ]-D is weakly dominated by at least one vertex in D. A weak domination number of a block graph B(G) is the minimum cardinality of a weak dominating set of B(G). In this paper, we study a graph theoretic properties of γWB (G) and many bounds were obtained in terms of elements of G and the relationship with other domination parameters were found.

References
  • R. B. Allan and R. Laskar, On domination and independent domination number of a graphs, Discrete Mathematics, Vol-23, 1978, 73-76.
  • E. J. Cockayne, R. M. Dawes and S. T. Hedetniemi, Total domination in graphs, Networks, Vol-10, 1980, 211-219.
  • E. J. Cockayne, P. A. Dreyer. Jr, S. M. Hedetniemi and S. T. Hedetniemi, Roman domination in graphs,Discrete Maths, V0l-278, 2004, 11-22.
  • E. J. Cockayne, B. L. Hartnell, S. T. Hedetniemi and R. Laskar, Perpect domination in graphs, J. Combin. Inform. System Sci, Vol – 18, 1993, 136 – 148.
  • G. S. Domke, J. H. Hattingh, S. T. Hedetniemi, R. C. Laskar and L. R. Markus,Restrained domination in graphs, Discrete Mathematics, Vol- 203, 1999, 61-69.
  • F. Harary,Graph Theory, Adison – Wesley, Reading Mass, 1974.
  • F. Harary and T. W. Haynes, Double domination in graphs, Ars combin, Vol-55, 2000, 201- 213.
  • J. H. Hattingh and M. A. Hanning, On strong domination in graphs, J. Combin. Math. Combin. Comput, Vol – 26, 1998, 73 – 92.
  • J. H. Hattingh and R. C. Laskar, On weak domination in graphs, Ars Combinatoria, Vol – 49, 1998.
  • T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Fundamentals of domination in Graphs,Marcel Dekkar, Inc., New York, 1998.
  • T. W. Haynes, S. T. Hedetniemi, P. J. Slater (Eds.), Domination in graphs: Advanced Topics, Marcel Dekker, Inc., New York, 1998.
  • S. T. Hedetniemi and R. C. Laskar, Connected domination in graphs, Graph theory and combinatories cambridge, (Academic press), Landon, 1948, 209- 218.
  • V. R. Kulli, Theory of domination in graphs, Viswa international publications, India, 2010.
  • V. R. Kulli and M. H. Muddebihal, Lict Graph and Litact Graph of a Graphs, Journal of Analysis and computation, Vol – 2, 2006, 133 - 143.
  • S. L. Mitchell and S. T. Hedetniemi, Edge domination in Trees, Congruent Number, Vol-19, 1977, 489 – 509.
  • M. H. Muddebihal and Geetadevi Baburao, Weak line domination in graph theory, IJRAR, Vol – 6, 2019, 129 – 133.
  • M. H. Muddebihal and Nawazoddin U. Patel, Strong Lict domination in graphs, IJRASET, Vol – 45, 2017, 596 – 602.
  • M. H. Muddebihal and Priyanka H. Mandarvadkar, Global domination in Line graphs, IJRAR, Vol - 6, 2019, 648 – 652.
  • M. H. Muddebihal, G. Srinivas, A. R. Sedamkar, Domination in squares graphs, Ultra scientist, Vol – 23(3), 2011, 795 – 800.
  • M. H. Muddebihal and Suhas P. Gade, Lict double domination in graphs,Global Journal of pure and applied Mathematics, Vol-13, 2017, 3113-3120.
  • M. H. Muddebihal and Sumangaladevi, Roman Block domination in graphs, International journal for Research in Science and Advanced Technologies, Vol – 6, 2013, 267 – 275.
  • M. H. Muddebihal and Vedula Padmavathi, Connected block domination in graphs, Int, J. of Physical Science, Vol – 25, 2013, 453 - 458.
  • Mustapha Chellali and Nader Jafari Rad, Weak Total domination in graphs, Utilitas Mathematics, Vol – 94, 2014, 221 – 236.
  • D. Routenbach, Bounds on the weak domination number, Austral J. Combin, Vol – 18, 1998, 245 – 251.
  • D. Routenbach, Bounds on the strong domination number, Discrete Math, Vol – 215, 2000, 201 – 212.
  • E. Sampathkumar and L. Puspa Latha, Strong weak domination number and domination balance in graphs, Discreate Math, Vol – 161, 1996, 235 – 242.
Index Terms
Computer Science
Information Sciences
No index terms available.
Keywords

Dominating set; Strong split domination; Weak domination; Perfect domination; Weak block domination

Powered by PhDFocusTM